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The percolation transition of geometric clusters in the three-dimensional, simple 
cubic, nearest neighbor Ising lattice gas model is investigated in the temperature 
and concentration region inside the coexistence curve. We consider "quenching 
experiments," where the system starts from an initially completely random con- 
figuration (corresponding to equilibrium at infinite temperature), letting the 
system evolve at the considered temperature according to the Kawasaki "spin- 
exchange" dynamics. Analyzing the distribution n~(t) of clusters of size l at time 
t, we find that after a time of the order of about 100 Monte Carlo steps per site 
a percolation transition occurs at a concentration distinctly lower than the per- 
colation concentration of the initial random state. This dynamic percolation 
transition is analyzed with finite-size scaling methods, While at zero tem- 
perature, where the system settles down at a frozen-in cluster distribution and 
further phase separation stops, the critical exponents associated with this 
percolation transition are consistent with the universality class of random 
percolation, the critical behavior of the transient time-dependent percolation 
occurring at nonzero temperature possibly belongs to a different, new univer- 
sality class. 

KEY WORDS: Percolation; phase separation; Monte Carlo simulation; 
lattice gas model; finite-size scaling. 

1. I N T R O D U C T I O N  A N D  O V E R V I E W  OF T H E  B A C K G R O U N D  
T H E O R Y  

W h e n  o n e  q u e n c h e s  a s y s t e m  t h a t  in i t i a l ly  is homogeneous  on a macroscopic  

scale t o  a s t a t e  i n s i d e  t h e  " b i n o d a l "  ( c o e x i s t e n c e  cu rve ) ,  i.e., t h e  b o u n d a r y  

of  a t w o - p h a s e  c o e x i s t e n c e  r eg i on ,  t he  i n i t i a l  h o m o g e n e o u s  s t a t e  is t h e r -  
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modynamically unstable. As the time t after the quench elapses, microscopic 
inhomogeneities, which either have been present in the initial state or have 
been formed after the quench by statistical fluctuations, get magnified. The 
scale of these inhomogeneities grows and grows with time up to the final 
equilibrium state, which is inhomogeneous on a macroscopic scale, composed 
of regions of the two coexisting phases (the volume fractions of these 
phases are given by the lever rule). 

It is commonly accepted that this spontaneous growth of 
inhomogeneous structures out of an initially homogeneous system may 
proceed by various rather distinct mechanisms, depending on whether the 
considered state is close to the binodal or deep inside in the two-phase 
region/1 3) The decay of states close enough to the coexistence curve is 
believed to start by nucleation ~4-6) and subsequent growth of well-isolated 
large-amplitude fluctuations ("heterophase fluctuations," "droplets"); these 
states are called "metastable." On the other hand, the decay of states well 
inside the two-phase region is believed to start by the growth of weak, 
delocalized, long-range fluctuations ("spinodal decomposition ''(1-3'7 9)). 
These states are called "unstable states," and in mean-field-type theories 
metastable states and unstable states are separated by a sharp dividing line 
with thermodynamically singular behavior ("limit of metastability," 
spinodal curve"~7'8'l~ This line can be defined (for d less than d* = 6 space 
dimensions (H-~4)) by the condition that the free energy barrier AF* against 
nucleation vanishes at the spinodal. It now is well accepted, however, that 
such a sharp spinodal line makes sense only for systems with long-range 
forces(14 19); for systems with short-range forces the spinodal curve is ill- 
defined, (a'2'6'14'17'2~ and in the kinetic mechanisms of phase separation a 
gradual transition from nucleation to spinodal decomposition occurs. (6'21) 
This transition region can only be approximately defined, e.g., by (6'1~ the 
region from, say, AF* v = 10kB T to AF* v = k B T, where AF*F is the mean- 
field result for the nucleation barrier; this region then always falls between 
the mean-field spinodal and the binodal (Fig. 1). 

In the present paper, we are concerned with different characteristic 
lines in the phase diagram: we consider the geometry of clusters deft'ned as 
groups of occupied sites connected by nearest neighbor bonds. While in the 
one-phase region for small c only clusters of rather small sizes occur, all 
clusters being well isolated from each other, with increasing c one encoun- 
ters a t  c(pc~ a percolation transition where an infinite percolating 
cluster first appears, and for c > C(pC~ a finite fraction of the occupied 
sites belongs to the largest cluster, which hence has a size proportional to 
the volume of the system. The line c(vC~ ends for infinite temperature at 
the critical concentration of the random site percolation problem, (22 24) 

(corr) P cp (T---~oo)---c (rand~ (~0.312, for the simple-cubic lattice(24'27)). 
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Fig. 1. (a) Schematic phase diagram of a three-dimensional, short-range lattice gas system, 
indicating various regions in the plane of variables temperature T versus concentration c of 
occupied sites, as well as various lines of percolation transitions. Since the diagram is sym- 
metric along the line c = 0.5 if the meaning of occupied and empty sites is reversed, full infor- 
mation is given only for the regime c ~< 0.5. Shown are both the coexistence curve ("binodal ')  
separating the one-phase region from the two-phase region and the mean-field spinodal curve 
separating metastable from unstable states in mean-field theory. The mean-field spinodal is 
described here by the equation (0.5 -c ) /0 .5  = +(1 - TITs) 1/2, T, being the actual critical tem- 
perature. The transition region from nucleation to spinodal decomposition for a short-range 
system, as defined in the text, is also indicated. The dash-dotted curves indicate percolation 
transitions, as discussed in the text. Shown below are snapshots of a square lattice at c = 0.5 
for (b) t = 0  and (c) t ~ 4 0  MCS/site, for a quench from a random initial configuration to 
T/T~ = 0.5. Occupied sites are shown by white circles (or black squares, respectively, if they 
belong to the largest cluster in the system), unoccupied sites are not shown. Note that the 
percolating cluster at t =40  MCS/site has grown by aggregation of various medium-size 
clusters already existing at t = 0, which are connected together by "weak links" that form 
when monomers diffuse around and hit these clusters. 
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Although this line for T < oo describes a correlated percolation problem,(25) 
the correlations are of short range only and hence this percolation trans- 
ition still belongs to the universality class (22) of random percolation. The 
line dp~176 ends at the coexistence curve at a temperature T ~ 0.96T(~ 26,27). 

In the present paper, we give evidence that a continuation of this line 
also exists inside the two-phase coexistence region, but as a transient time- 
dependent  phenomenon:  after short-range correlations have been built up 
after a time tl, we also encounter only isolated finite clusters for 

( co r r )  Cp (T,  t), it then happens c < c p  (T, t) for t >  tl. At a concentration c >  ( .... ) 
that the system is nonpercolating for short times ( t <  tl), and stays per- 
colating for a finite time interval (t~ < t <  t2), while later the percolating 
cluster has disintegrated into a set of finite clusters again. (28) The extreme 
case, where the infinite cluster appears only for a short time ( t2= t l ) ,  
defines the so-called "dynamic spinodal" ( .... ) = Cp (T,  t2 t~) in the phase 
diagram. (28) The other extreme case occurs for such concentrations where 
the system stays in a percolating state for all times exceeding tl,  i.e., when 
t 2 o% which defines another line ( . . . .  ) c p ( T, t 2 --* oo ) in the phase diagram. 
In fact, between the lines cp( .... )(T, t2 oo) and ( .... ) = --~ Cp ( T ,  t 2 t~) we expect a 
whole family of lines, depending on the time interval [t~, t2] being con- 
sidered. In Fig. 1, we have disregarded this complication, and represent 

( co r r )  Cp (T, t) by a single line denoted "percolating microscopic structure." 
It is interesting to follow the behavior of these lines down to T =  0. 

While both coexistence curve and mean-field spinodal end in the points 
c = 0 ,  c 1, the percolation line ~ .... ) = cp (T, t2-~ oo) ends in a "static" per- 
colation point c~p~~ 0) separating the regime of frozen-in finite clusters 
from the regime of a frozen-in percolating structure. These states are not in 
equilibrium, but are frozen in for infinite times, since at zero temperature no 
energy barrier can be overcome, and thus these configurations cannot relax 
toward the true equilibrium states (which are macroscopically separated 
compact regions with c--  0 and c = 1, respectively). 

In addition to these percolation phenomena at a microscopic scale 
(where clusters are defined in terms of occupied lattice sites), at late stages 
of the phase separation process, where the system is phase-separated on a 
scale l(t)  into the coexisting phases with concentrations given by the two 
branches of the coexistence curve, e (~) and C (2)  respectively, it makes -coex coc• 

sense to consider percolation phenomena on larger length scales, too. Sup- 
pose we divide our systems into cells of linear dimension Ic, with I c ~ l(t),  
but Ic much larger than the lattice spacing. Most of these cells will then 
have concentrations rather close to either c r or c 12) We now may define - c o e x  coex �9 

clusters consisting of neighboring cells with concentrations in a given inter- 
val [e ~) . . . .  - 6e/2, e (~1_ . . . .  + 6e/2] ,  and may ask whether these clusters are well- 
separated from each other or form an infinite percolating network. Since 
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l(t)  ~ 0% we may then also take l c -~ oo and at the same time 6c -~  0, so 
that there is no longer any ambiguity in this coarse-grained percolation 
problem. The line of this percolation transition in the macroscopic phase- 
separated structure must again end in the critical point; we have also 
included this line in Fig. l, but do not discuss it any further in this paper. 
We only note that it is this line that would be experimentally accessible by 
techniques sensitive to the "contrast," i.e., difference in refraction index, 
between the two coexisting phases, such as observations by light or elec- 
tron microscope. In addition, we disregard percolation phenomena that 
one may observe when one redefines the clusters in order that they reflect 
the physical correlations in the system (then the critical point is a 
percolation transitionS29'3~ For long-range interactions, the percolation 
transition of these "physical clusters" coincides with the spinodal 
curve112'31~; the significance of the percolation transition of "physical 
clusters" (in the sense of Refs. 29 and 30) inside the coexistence curve is not 
yet known for the case of short-range interactions, however. Previous work 
on percolation phenomena during phase separation either has been restric- 
ted to qualitative considerations only ~32) or has studied the fractal 
dimension ~33) of phase separation clusters at particular points in the phase 
diagram only. ~28'34) In our opinion, the observation of fractal dimen- 
sionalities for phase separation clusters possibly can be interpreted by 
assuming that the data of the model of Ref. 34 were taken not very far from 
the line r~c~ t). This assumption is consistent with the observation in 
Ref. 34 that about one-half of all the atoms did belong to the percolating 
cluster that was analyzed--such a value of the percolation probability 
occurs close to a percolation threshold only. In two dimensions cluster 
properties of a phase separating system on a triangular lattice have been 
studied ~67) at a concentration c =  1/2. However, there the system always 
stays percolating. 

Another question that needs to be addressed but is outside of the 
scope of the present work concerns the extent to which the percolation 

(corr) transition at Cp (T, t) has any effect on experimentally observable quan- 
tities, such as the structure factor S(k, t). Predicting S(k, t) at the later 
stages of phase separation is a formidable problem~l'2'9'21'35'36); since many 
ideas on the subject use concepts on cluster dynamics,~21'35 37) 
understanding of the cluster geometry may be a useful ingredient of a more 
complete theory. Also, we do not analyze in any detail the time dependence 
of the "kinetic gelation" by which the small clusters present initially 
aggregate to form the infinite percolating net, for c >1 Cp~ = t2). 

In Section 2, we describe in more detail the model simulated to map 
out the line -~ ... .  )tT t) in Fig. 1, and explain the procedures by which the 
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simulation data were analyzed. Section 3 discusses critical exponents on the 
basis of a finite-size scaling (38~~ analysis. Section 4 contains a discussion of 
our results and an outlook on possible future work. 

2. M O N T E  CARLO I N V E S T I G A T I O N  OF D Y N A M I C  
PERCOLATION IN THE S IMPLE CUBIC  LATTICE 

We study simple cubic L 3 lattices, choosing linear dimensions 
L = 10, 15, 20, 30, and 40 (the two smallest linear dimensions have been 
found less useful and are included only occasionally). For T - 0 ,  also 
L = 50 is considered. The initial state of each simulation run is a completely 
random configuration. We then let the system evolve in time using the 
standard Kawasaki-type (41) dynamics, as usual for Monte Carlo 
simulations of phase separation. (42'43)'2 In each run we monitor the time 
evolution of the size of the largest cluster, applying standard cluster 
counting and cluster identification algorithms. (45'27'28) Of course, there 
occur huge fluctuations in the size of the largest cluster; therefore, it is 
necessary for each choice of the variables temperature T, concentration c, 
and lattice linear dimension L to take a sample of n statistically indepen- 
dent time evolutions, where typically n = 40-50. These n different time 
evolutions are generated by choosing different random numbers for each 
random starting configuration, as well as different random numbers for 
executing the desired random exchanges by which the time evolution of the 
model proceeds. 

As an example, Fig. 2a shows the time evolution of the largest cluster 
for T/Tc=0.3 at short times (0-80 Monte Carlo steps/site) and Fig. 2b 
shows the results for a longer time scale (0-800 Monte Carlo steps/site). It 
is seen that in the short-time regime the cluster size increases rapidly with 
increasing time, reaches a maximum, and then decreases. It is also 
recognized that in spite of using a system of 64,000 lattice sites and 
averaging over a sample n = 40-50, there are still appreciable fluctuations 
in cluster size. In order to gain statistics we hence have averaged these "raw 
data" over a time interval At for such times where the cluster size dis- 
tribution n~(t) did not change much with time. Obviously, this cannot work 
for the early-time regime, where n~(t) strongly increases for large l (at the 
expense of small clusters, in particular monomers, which are present 
initially but gradually disappear as phase separation proceeds). Most of the 
data analyzed below are averages over the interval from t = 8 0  to 
t = 240 MCS/site, i.e., the region of the peaks in Fig. 2. We have analyzed 
similarly the behavior in the later-time region from t---640 to 

2 See also Ref. 44 for more details. 
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t =  800 MCS/site for T/Tc=0.3; the decrease of the size of the largest 
cluster seen in Fig. 2 leads to a slight increase of the percolation concen- 
tration (corr) C~ (T, t) with time. 

If the final temperature T of the quench is T = 0 ,  the behavior is 
somewhat different (Fig. 3). After a relatively short time, a stationary 
cluster size distribution is reached. This behavior is easily interpreted 
physically: at T =  0, only such exchanges are possible that do not involve 
any energy cost. 3 If the initial state did consist of an assembly of well- 
separated small clusters, as happens in the regime of concentrations far less 
than the percolation threshold C (rand~ basically only monomers are --p 

mobile (Fig. 4). These monomers will diffuse around until they get attached 
to some of the larger, immobile clusters. Although some motion is also 
possible for the larger clusters (Fig. 4b) and even within the infinite per- 
colating net (Fig. 4d), such motions are not sufficient to maintain a coar- 
sening of the structure. Due to the coarsening at nonzero temperature some 
loosely bound parts of the largest cluster break off again, (32) and this effect 
leads to a decrease of the size of the largest cluster at intermediate time 
scales. But even at zero temperature an analytic treatment of the "cluster 
dynamics" is not possible on a rigorous basis, as additional monomers may 
be created due to processes such as shown in Fig. 4c. Due to processes 
similar to those of Fig. 4b, sometimes one also reaches states where the 
cluster size distribution is not exactly stationary, but is irregularly 
oscillating in time: These fluctuations are also smoothed out by averaging 
over suitable time intervals At. 

Figure 5 summarizes our results for the percolation probability P ~ ,  
which we have estimated by dividing the number of occupied sites con- 
tained in the largest cluster by the total number of occupied sites. It is seen 
that there occur rather pronounced finite-size effects in the concentration 
regime of interest; an analysis of these finite-size effects will be attempted in 
the next section. Here we only note that the curves for P ~  for different L 
intersect in a rather narrow concentration interval, which can be taken as 
an upper bound for any estimate of ~p ~( .... )~Tt , t), t being chosen in the inter- 
val At from t =  80 to 240, as noted above. Figure 6 shows a quantitative 
phase diagram of the simple cubic lattice gas model, including the results 
f o r  (corr) Cp (T, t) resulting from Fig. 5. In order to check for any systematic 
errors due to the smoothing of the data over the time interval At, we have 
also analyzed data for P~  taken at the fixed time t = 120 and verified that 
the resulting curves within their error bars are completely indistinguishable 
from those shown in Fig. 5. 

3 Previous work on phase separation kinetics at T =  0 has been performed for concentration 
c = 1/2 onlyr 46~ 
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Fig. 4. Motions possible in quenching experiments at T=0. (a) A configuration with a 
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after the configuration is frozen. (b) A configuration containing two trimers and one dimer. 
Although the motions indicated in the figure can go on back and forth indefinitely, they do 
not affect the cluster size distribution. (c) A situation where two motions destroy a trimer and 
create a free monomer again. (d) Motions of dangling ends in a percolating cluster at T= 0. 

Of course, it also is of interest to compute and analyze various other 
quantities that characterize the cluster size distribution n~(t) near this 
percolation transition. For example, we are interested in the 
"susceptibility" (22-24) 

E /  z = / % ( 0  (1) 
l 

where the prime indicates that the largest cluster in the system is excluded 
from the summation.  Figure 7 shows data for Z at T = 0 .  One finds the 
familiar picture of a peak that grows to infinity as L --+ oo. Extrapolat ion of  
the peak posi t ion gives another criterion to locate the percolat ion concen-  
tration, as indicated in the inset. 
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3. FINITE-SIZE SCALING ANALYSIS AND DISCUSSION OF 
CRITICAL BEHAVIOR 

It is quite obvious from the "raw data" presented in Figs. 5 and 7 that 
both P ~  and ~ are strongly affected by finite-size effects, and a careful 
analysis of these effects is necessary if we wish to analyze the critical 

(tort) exponents of the percolation transition occurring at Cp (T, t). We hence 
apply the standard finite-size scaling relations [in this section we 
abbreviate c--C(pC~ t) as 6c] ~38 40) 

P~(L,  c) = L-~/~P(6cL l/v) (2) 

z(L, c) = LT/v~(6cLI/~) (3) 

where v is the correlation length exponent, /~ and 7 are the critical 
exponents of P ~  and z [ P ~ ( L  ~ 0o) ~ (6c) ~, z(L ~ ~ )  ~ (6c) - r ] ,  and P, 

are associate scaling functions. 
First we use Eq. (2) to justify the phenomenological intersection 

method used in Fig. 5 to infer first rough estimates for ( .... I Cp (T, t). At fixed 
L, P~(L,  c) is a continuous function near 6e = 0, and hence for small 6c we 
must have 

P(6cL 1/~) ~ P(O) + P'(O) 6cL 1/~ + ... (4) 

with P ' ( 0 ) > 0 ,  since P~(L,  c) is an increasing function of c. Now the 
equation P~(L,  c) = P~(L' ,  c) defining an intersection point yields 

L -~ /v -  (L')-~/v P(O) 
6C~(L,)l/~ ~/~ L1/V_~/v /~'(O) (5) 

Equation (5) shows that ~c --* 0 as L --+ 0% i.e., the abscissae of the intersec- 
tion points do converge toward ( .... Cp (T, t) in Fig. 5. Moreover, one sees 
that 6c>0,  and hence ( .... ) Cp (T, t) in general is slightly overestimated by 
this intersection method. This prediction is consistent with our data: e.g., in 
Fig. 5e the intersections occur near c ~ 0.17, while the extrapolation of the 
maxima of z(L, c) yields ~ .... Cp (0, t) ,,~ 0.160 (Fig. 7). Another prediction 
resulting from Eq. (2) yields for the ordinate of the intersection point a 
decrease proportional to L ~/v with increasing L. This prediction also is 
compatible with the data; see Fig. 5c. 

More precise estimates for (tort) Cp (T, t) would result from the intersec- 
tion method if one would apply it to a quantity the scaling power of which 
is zero in the finite-size scaling analysis. For  standard critical phenomena 
(e.g., Ising models) a convenient quantity (47) for this purpose is the nor- 
malized cumulant of the probability distribution of the order parameter s, 
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3 - - 3  ( $ 4 ) L / ( 2 < S  2 2 . i.e., :Ur = )L)- It varies between zero and unity, and has a 
finite nonzero value at criticality. For the percolation problem, an 
analogous quantity would be the probability Ps(L, c) to have a "spanning 
cluster" in a finite system of linear dimension L (a "spanning cluster" 
extends from one boundary of the system throughout the system to the 
opposite boundary)J 48~ In the thermodynamic limit, Ps(oo, c ) = 0  for 

p( . . . .  ) t T  t) and P,(oo, c ) = l  for C>~p ,~, C<~p I ' ,  r (  . . . .  )(T t) similar to t h e  a b o v e  

quantity 3U~o. The finite-size scaling relation for Ps(L, c) simply is 

Ps(L, c) = Ps(6cL l/v) (6) 

and hence the equation Ps(L, c) = P~(L', c) yielding the intersection point 
implies 6c = 0. In practice, however, Ps(L, c)= Ps(L', c) will also not yield 
precisely 6c = 0, due to corrections to finite-size scaling. In addition, the 
statistical effort needed to yield information on P,(L, c) is much larger than 
for P~(L, c), and hence Ps(L, c) was not recorded. 

In order to get reasonable estimates for ,~ .... )iT t) from Fig. 5, we 
proceed as follows: We choose some preliminary estimates for/? and v, and 
then we plot the abscissa c* of the intersection point of P~(L)  and P~(L')  
versus the variable 

[L-~/v _ (L')-~/v]/[(L')I/~-~/~- LI/~ ~/~] 

Then Eq. (5) implies that all points c*(L, L') should fall on a straight line; 
the intersection of this straight line with the ordinate axis is then an 
improved estimate for I .... ) Cp (T, t). Figure8 shows that this procedure 
works, but it allows an extrapolation both with the exponents of random 
percolation (/~ = 0.45, v = 0.88; see Fig. 8a) and with rather different values 
(/~=0.48, v=0.70; see Fig. 6b). The systematic difference between the 
estimates for Cp( .... )iT,_, t) resulting from these extrapolations gives an idea 
about the accuracy Ac with which we can estimate A .... )rT t) from our ~p \ ~  

data (Ac ,~ 0.005). 
P(c~ t), we have In view of the uncertainty in the precise value of ~p ,~, 

tried to analyze our data in terms of Eqs. (2) and (3), treating both the 
exponent estimates (1/v, ~/v, 7/v) and ~ .... ) Cp (T, t) as fitting parameters. Due 
to the restricted accuracy of our data for P~(L, c) (Fig. 5) and )~(L, c) 
(Fig. 7), it turns out, however, that the fitting procedure does not favor a 
particular unique choice of parameters/~, v, and Cp( .... ~(r,~, t). Rather, a fit of 
reasonable quality can be obtained for a broad range of concentrations 

(corr) cp (T, t), and the exponent estimates are strongly correlated with the 
estimate for A . . . .  ) ( r  t). As a consequence, the accuracy of estimates 
resulting from this finite-size scaling "data collapsing" procedure is rather 
uncertain (of course, this is the standard difficulty of this method, as is well 
known(49)). 
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"best fit" exponents f l=0.12,  v=0 .89  [from Poo, case (a)] or 7 = 1.50, v=0 .78  [from Z, case 
(a)] or fl =0.28, v =0.80 [from P ~ ,  case (b)] or 7 = 1.56, v=0 .81  [from X, case (b)]. (c) The 
choice C(p~176 t ) =  0.160, with the exponents /~ =0.45, 7 = 0.88, i.e., the known values of the 
s tandard random percolation problem (24~. Note that ?/v = 1.92 following from (a) or (b) 
would also be consistent with the data shown in Fig. 7b within their statistical error. 
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Fig. 9 (continued) 

We first analyze the situation for T =  0. Figure 9 shows three fits for 
both Z and Po~. If we choose ( . . . .  ) Cp (0, t) = 0.168, which would be closest to 
the intersection points in Fig. 5c, the estimates for v resulting from Po~ and 
X are not in full agreement with each other, and the hyperscaling relation 
7 + 2/~ = 3v is strongly violated. Also, for , ' (  . . . .  )m t )=0 .164  there is still a 
distinct violation of the hyperscaling relation, and the fit is obviously not 
significantly better than in the case shown in Fig. 8c, where we use 
cp(C~ t )=0 .160  (which is a reasonable choice, as shown by the 
extrapolation in Fig. 7), and the theoretical "best values" for the exponents 
of the random percolation problem in d = 3  dimensions, namely (24) 
/ /=0.45,  7 = 1, 74, v =0.88. Also, for choices Cp(~176 r)~0.161~0.163 these 
random percolation exponents still yield reasonable fits. (44) We conclude 
that for T =  0 the percolation transition occurring in these quenching 
experiments most probably falls in the universality class of standard 
random percolation. 

For T # 0 ,  however, the situation is not so clear. Irrespective of the 
choice of ,~( . . . .  )~T t), we never obtain a "data collapsing" of the curves for 
P~(c, L) on a single curve with a reasonably small scatter, if we impose the 
random percolation exponents. Rather, one always sees drastic systematic 
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deviations, as shown in the examples presented in Fig. 10. On the other 
hand, now the "best fit" exponents are fairly independent of temperature, 
and also the estimate for v is distinctly smaller than the random per- 
colation value. Note that while fl is strongly dependent on the choice of 

(corr) Cp (T, t), v varies much less. Varying C~pC~ t) from 0.177 to 
0.187, we find that only values v in between 0.55 and 0.71 occur. Varying 

(corr) Cp ( T =  0.6, t) from 0.199 to 0.209, we find only values of v between 0.50 
and 0.68. Also, Fig. 8 shows relatively little variation of the fitted v with 

(corr) Cp (0, t). This result could mean that the critical behavior along the per- 
colation transition line ( . . . .  ) Cp (T, t) for T > 0  belongs to a different univer- 
sality class than that of the transition at T =  0, which we believe is simply 
random percolation, though with a critical concentration only about one- 
half as large as in the random site percolation problem. Such a conclusion, 
if correct, would be rather surprising, since the percolation transition along 
the whole line dpC~ in the one-phase region belongs to the universality 
class of simple random percolation again. 

In order to study this problem further, we have also studied the cluster 
size distribution function nz(t) at the critical concentration c = C~pC~ t); 
see Fig. 11. Since our lattices are rather small and the effective critical con- 
centration is shifted to larger values for these small lattice sizes L, we have 
chosen those effective values rather than the values extrapolated to L ~ 
in Fig. 8. It is seen that the data are reasonably consistent with the expec- 
ted power law variation ~22) 

nt(t) ~ l -~, r = 2 + 1/6 (7) 

In all cases we find an exponent z > 2, as it should be, and again at T = 0 it 
is nicely consistent with the theoretical value of random percolation 
[1/6 = [3/(7 + 6 ) ~  0.21], while for T >  0, r seems to be somewhat smaller, 
implying a smaller value of 1/3, consistent with the estimate 1/3~0.16 
following from the estimates for [3 and 7 quoted above. However, the 
statistical errors of r always are of the order of 0.05 at least, and there may 
be an additional systematic error due to the inaccuracy in the choice of 

(corr) Cp (T, t). From the data in Fig. 10 we cannot rule out that one observes 
simple random percolation at all temperatures. 

Obviously, the accuracy of our study of the critical behavior of the 
percolation transition in phase separation is by far less than the accuracy 
that now is standard in the study of the ordinary percolation 
problem.(Z4,48 5o) Of course, this must be expected. In one MCS/site one 
generates a new and statistically independent configuration of the lattice for 
the ordinary site percolation problem, while in the present problem we 
have to let the system evolve of the order of 100 MCS/site to generate a 
new configuration. 



1 0 7 4  H a y w a r d ,  H e e r m a n n ,  a n d  B i n d e r  

.,, (~) 'u o 

�9 ~ �9 o � 9  

iS 
$ 

~oo 

x ' k t  ~ 
o 

oo 
o - 

! 

6 J  r I / ( ~  ~ 

(.I) luE7 

T 

.s U (L 

"~  u~ ~ r ~ ii 

II ~ c  



Dynamic Percolation Transition 1075 

4. D I S C U S S I O N  

The main result of this paper is contained in Fig. 6, where it is shown 
that a percolation transition can be located throughout the two-phase 
region of an Ising lattice gas model occurring during the intermediate 
stages of phase separation (t being of the order of 100 MCS/spin). At 
T= 0, we obtain evidence that the percolation transition belongs to the 
universality class of simple random percolation, although the critical 
concentration is reduced by about a factor of two [C(p~176 
C~pC~ t)~0.16]. Although a reduction of the critical concentration 

~cor~) is expected, since the "monomers" are removed in comparison with Cp 
from the system during the process and attached to the larger clusters 
(Fig. 4), the large amount of this reduction was unexpected [note that for 
c = c( .... ) only about 12% of the occupied sites belong to monomers]. For -p  

T > 0, the critical behavior seems to be less compatible with that of random 
percolation, and indicates different exponents, which would imply that the 
transient dynamic percolation during phase separation belongs to a new 
universality class. This finding is rather unexpected, since the dynamic 
structure factor S(k, t) exhibits no significant correlations at large distances 
during the early and intermediate stages of phase separation. Correlations 
are seen in S(k, t) only from small distances up to the characteristic length 
scale l(t), and on length scales L>>l(t) the configuration is still rather 
random. Of course, it may be that the intrinsic instability of the system 
influences the diffusion process on large length scales in such a way that the 
cluster statistics is strongly affected even for cluster sizes much larger than 
l(t). From the studies of irreversible growth phenomena such as diffusion- 
limited aggregation or cluster-cluster aggregation, 4 one knows that the 
existing irregular clusters have a strong effect on the probability dis- 
tribution for the diffusion of the surrounding objects. Since the percolation 
cluster in our case also appears as a result of a specific growth 
phenomenon, it is conceivable that it belongs to a new universality class. 

(corr) What are the consequences of the percolation transition at Cp (T, t) 
for our understanding of phase separation dynamics? It is not obvious that 
one can see any singular behavior in the dynamic structure factor S(k, t). 
After all, the percolation transition a t  c (c~  in the one-phase region is 
irrelevant for the static structure function ST(k ) , which is singular at the 
critical point only. It is well known that "physical clusters ''(29'3~ rather 
than geometrical clusters show up in the physical correlation functions. At 
low temperatures physical and geometrical clusters do become identical, 
however. Thus, it is reasonable to expect that if one studies the percolation 
of "physical clusters" instead of geometrical clusters during phase 

4 For a thorough recent review of growth phenomena  see Ref. 51. 
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separation, one will find a line of percolation transitions similar to Fig. 6, 
starting at T = 0  at the same point C~c~ t )~0.16,  but at higher tem- 
peratures it will deviate distinctly from Cp(~176 t) and bend over to higher 
concentrations, to end at the critical point T =  Tc, c = C~rit = 1/2, similar to 
the dash-dotted curve in Fig. 1 describing the percolation transition in the 
coarse-grained structure of the late stages. Neither of these percolation 
phenomena is taken into account in current theoretical descriptions of 
phase separation kinetics. In fact, much recent activity has been directed 
toward an extension of the Lifshitz-Slyozov (52) cluster-evaporation and 
condensation mechanism to higher concentrations. (53~64'37) All these treat- 
ments, as well as work considering the droplet diffusion and coagulation 
mechanism, (371 treat the clusters as essentially compact, spherical objects. 
In contrast, our work shows that the usefulness of these approaches 
probably is restricted to concentrations distinctly smaller than cp~c~ t). 
We have an infinite percolating net, and coarsening proceeds by the 
breakoff of atoms from dangling ends or other small-scale structure of the 
net. These atoms diffuse around in the matrix and get reattached to the net 
in such a way that thin links in the net either get thickened or "evaporate." 

(corr) Right at Cp (T, t), we still have very large but finite separated clusters, 
described by the distribution (7), but they are not compact objects, but 
rather fractals. (33) Their fractal dimensionality df  can be expressed in terms 
of the exponents of the percolation transition in the standard way (24) as 

df-= d -  fl/7 ~ 2.49 (8) 

where we have used the exponents appropriate for random percolation [if 
(corr) the transition at cp ( I ,  t) belongs to a different universality class with 

fl ~ 0.48, y = 0.70, d f ~  2.3, which implies that the clusters would be slightly 
less compact].  

Various mechanisms of cluster growth and coarsening considered in 
Refs. 37 and 51-64 assume compact (essentially spherical) droplets. 
However, the large but finite clusters that occur for concentrations c 
slightly below ( . . . .  ) Cp (T,  t) [which are described by the cluster size dis- 
tribution nt(t)  oc l -~ for l ~  oo at c=c~C~ t)]  are not at all compact, 
but rather ramified objects. This fractal structure should have a pronoun- 
ced effect on the rates of the various cluster growth mechanisms; e.g., a 
standard assumption is that the number of atoms evaporating from the sur- 
face of a cluster containing l sites per unit time is a rate constant F times 
the surface area of the cluster. For  a compact d-dimensional cluster the sur- 
face area St is proportional to I a - a/a, and this power law $1 oc I a a/a is used 
explicitly both in the derivation of the Lifshitz-Slyozov (51'35) law l ( t )  o c t  a/3 
and in the derivation of the growth law l ( t )  o c t  a/(a+ 3) resulting from cluster 
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diffusion and coagulation ~ when one assumes that the cluster diffusion 
is due to atoms that evaporate and reimpinge on the same cluster. A single 
event of this type produces a shift of the cluster center of gravity of order 
l 1. Then the cluster diffusion constant is D t oc S f l  2 oc l-1--1/d. Assuming 
that two clusters of about  the same size l can coalesce when they have 
diffused a distance of their own size l, which needs a time At  given by 
l 2 /d=  D~ At, one obtains 

d l / d t ~ A l / A t ~ I / ( l Z / d / D t )  oc 1 3/d, l(t) oc t a/(d+3~ 

as quoted above. Assuming now fractal instead of compact  clusters, we 
have $l oc l: with ~ > 1 - l /d, and Dz oc l ~ 2. Then the same reasoning as 
above would yield instead 

dl/dt ~ l/(12/ay/Dt) oc 1 r  ' 2/+ 

and the growth law would become l( t)  oc t 1/~2- ~ + 2/df]. The fractal structure 
in this case would be reflected in a nontrivial value of the growth exponent 
relating the typical domain size l(t) to the time t. 

Binder and Kalos (37) pointed out that at temperatures not too low the 
dominating mechanism of cluster diffusion is effected by random 
evaporation and condensation events of a toms the typical distance of 
which is of the order of the cluster linear dimension itself. Then 

D l oc Sl(1 1 + 1/ds)2 oc l ~ 2 + 2/@ (9) 

and since d:-~ 2 for d =  2 and ~ = 1 for rather ramified objects, one would 
obtain a cluster diffusion constant that does not decrease with cluster size, 
i.e., a rapid diffusion of clusters would result. The physical consequences of 

(corr) this rather rapid motion of the clusters near Cp (T, t), as well as the 
accompanying rapid rearrangements of their shapes, need to be elucidated. 

An alternative growth mechanism of the fractal clusters might be a 
"filling in" of the domains, which then initially would compactify. This 
mechanism was observed in Ref. 68 in a medium-range model with noncon- 
served order parameter. It  is not clear to what extent this mechanism is 
effective in the present model with conserved concentration, where 
monomers  would have to diffuse to the center of the domains from the out- 
side in order to compactify. This diffusion to the center will probably be 
screened out, similar to what happens during cluster growth in diffusion- 
limited aggregation. 

Another property of the clusters becomes crucial in the limit T ~  0. 
Then predominantly only particular atoms can be broken off a cluster by 
thermal fluctuations, namely those atoms that in "dangling ends" are 
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Fig. 12. Schematic picture of  a fractal cluster as it occurs near the percolation threshold 
c~oC~ t) in phase separation dynamics. The atoms in dangling ends are encircled; 
predominantly those atoms contribute to the further time evolution of the system. 

bound to a single other atom of the cluster (Fig. 12). For the number na(l) 
of atoms in dangling ends of an/-cluster we again expect a power law 

na(l) ~ l ~ (10) 

but the exponent 0 is unknown. At low enough temperatures, it may be 
appropriate to replace St by na(l ) in the above formulas for the cluster 
diffusivity and in the consideration of the Lifshitz-Slyozov mechanism. 
Another rather intriguing aspect of our results is that the finding 

(corr) Cp (0, t )~0.16 happens to agree with the so-called critical volume 
fraction ~bc = 0 . 1 6 ,  (65"66) which is the percolation treshold when spheres are 
randomly placed in the continuum. It has been suggested (32) that there 
exists a critical volume fraction of the coexisting phases, 

c - 

~crit - -  
C oox - 



Dynamic Percolation Transition 1079 

where the macroscopic  structure of  phase-separated domains  of the two 
phases having the concentrat ions c(~l)~x and c~2~x percolate (the inner dash- 
dot ted curve in Fig. 1). It is tempting to speculate that  ~bcr~t is the same as 
~bc; this would imply that  the two dash-dot ted  curves in Fig. 1, describing 
percolation thresholds for intermediate and for late stages, end at T =  0 in 
the same point. 

We are fully aware that this whole section is very speculative, and 
poses many  questions rather than yielding definitive results. But we feel 
that  unders tanding the dynamics  of coarsening of percolating structures is 
crucial for making progress in the unders tanding of phase separation 
kinetics, and hope that  the present work will be a st imulating starting point  
for further work along these lines. 
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